Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Sex Differ ; 15(1): 19, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409052

RESUMO

BACKGROUND: Sex differences exist in the risk of developing type 1 and type 2 diabetes, and in the risk of developing diabetes-associated complications. Sex differences in glucose homeostasis, islet and ß cell biology, and peripheral insulin sensitivity have also been reported. Yet, we lack detailed information on the mechanisms underlying these differences, preventing the development of sex-informed therapeutic strategies for persons living with diabetes. To chart a path toward greater inclusion of biological sex as a variable in diabetes research, we first need a detailed assessment of common practices in the field. METHODS: We developed a scoring system to evaluate the inclusion of biological sex in manuscripts published in Diabetes, a journal published by the American Diabetes Association. We chose Diabetes as this journal focuses solely on diabetes and diabetes-related research, and includes manuscripts that use both clinical and biomedical approaches. We scored papers published across 3 years within a 20-year period (1999, 2009, 2019), a timeframe that spans the introduction of funding agency and journal policies designed to improve the consideration of biological sex as a variable. RESULTS: Our analysis showed fewer than 15% of papers used sex-based analysis in even one figure across all study years, a trend that was reproduced across journal-defined categories of diabetes research (e.g., islet studies, signal transduction). Single-sex studies accounted for approximately 40% of all manuscripts, of which > 87% used male subjects only. While we observed a modest increase in the overall inclusion of sex as a biological variable during our study period, our data highlight significant opportunities for improvement in diabetes research practices. We also present data supporting a positive role for journal policies in promoting better consideration of biological sex in diabetes research. CONCLUSIONS: Our analysis provides significant insight into common practices in diabetes research related to the consideration of biological sex as a variable. Based on our analysis we recommend ways that diabetes researchers can improve inclusion of biological sex as a variable. In the long term, improved practices will reveal sex-specific mechanisms underlying diabetes risk and complications, generating knowledge to enable the development of sex-informed prevention and treatment strategies.


Men and women have a different risk of developing type 1 and type 2 diabetes. Men and women also live with different complications of diabetes and show different treatment benefits. One reason for these differences is that biological sex affects diabetes risk, complications, and treatment efficacy. Unfortunately, a lot of diabetes research does not consider whether biological sex might affect the study results. As a result, we do not have enough information to match an individual's sex with the best diabetes prevention and treatment strategies. We are tackling this problem by learning how diabetes researchers consider biological sex in their studies. We read and scored over 800 diabetes research papers to see if, and how well, they considered biological sex in their study. Based on our results, we recommend several easy ways that diabetes researchers can do a better job of considering biological sex in their work. As more researchers consider biological sex, they will learn more about how an individual's sex affects diabetes risk, complications, and treatment effects. This information will benefit the diabetes community as a whole because it represents the first step toward matching an individual's sex with the best prevention and treatment strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Masculino , Feminino
2.
Cell Metab ; 35(12): 2119-2135.e5, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37913768

RESUMO

The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.


Assuntos
Carcinoma in Situ , Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Insulinas , Neoplasias Pancreáticas , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Inflamação/metabolismo , Hiperinsulinismo/complicações , Metaplasia/metabolismo , Metaplasia/patologia , Obesidade/metabolismo , Insulinas/metabolismo
3.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37645868

RESUMO

The ease of genetic manipulation in Drosophila melanogaster using the Gal4/UAS system has been beneficial in addressing key biological questions. Current modifications of this methodology to temporally induce transgene expression require temperature changes or exposure to exogenous compounds, both of which have been shown to have detrimental effects on physiological processes. The recently described auxin-inducible gene expression system (AGES) utilizes the plant hormone auxin to induce transgene expression and is proposed to be the least toxic compound for genetic manipulation, with no obvious effects on Drosophila development and survival in one wild-type strain. Here we show that auxin delays larval development in another widely-used fly strain, and that short- and long-term auxin exposure in adult Drosophila induces observable changes in physiology and feeding behavior. We further reveal a dosage response to adult survival upon auxin exposure, and that the recommended auxin concentration for AGES alters feeding activity. Furthermore, auxin fed male and female flies exhibit a significant decrease in triglyceride levels and display altered transcription of fatty acid metabolism genes. Although fatty acid metabolism is disrupted, auxin does not significantly impact adult female fecundity or progeny survival, suggesting AGES may be an ideal methodology for studying limited biological processes. These results emphasize that experiments using temporal binary systems must be carefully designed and controlled to avoid confounding effects and misinterpretation of results.

4.
bioRxiv ; 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37090676

RESUMO

Within the thymus, regulation of the cellular cross-talk directing T cell development is dependent on spatial interactions within specialized niches. To create a holistic, spatially defined map of tissue niches guiding postnatal T cell development we employed the multidimensional imaging platform CO-detection by indEXing (CODEX), as well as CITE-seq and ATAC-seq. We generated age-matched 4-5-month-old postnatal thymus datasets for male and female donors, and identify significant sex differences in both T cell and thymus biology. We demonstrate a crucial role for JAG ligands in directing thymic-like dendritic cell development, reveal important functions of a novel population of ECM- fibroblasts, and characterize the medullary niches surrounding Hassall's corpuscles. Together, these data represent a unique age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, and provide an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.

5.
Mol Metab ; 69: 101678, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690328

RESUMO

OBJECTIVE: Pancreatic ß cells play a key role in maintaining glucose homeostasis; dysfunction of this critical cell type causes type 2 diabetes (T2D). Emerging evidence points to sex differences in ß cells, but few studies have examined male-female differences in ß cell stress responses and resilience across multiple contexts, including diabetes. Here, we address the need for high-quality information on sex differences in ß cell and islet gene expression and function using both human and rodent samples. METHODS: In humans, we compared ß cell gene expression and insulin secretion in donors with T2D to non-diabetic donors in both males and females. In mice, we generated a well-powered islet RNAseq dataset from 20-week-old male and female siblings with similar insulin sensitivity. Our unbiased gene expression analysis pointed to a sex difference in the endoplasmic reticulum (ER) stress response. Based on this analysis, we hypothesized female islets would be more resilient to ER stress than male islets. To test this, we subjected islets isolated from age-matched male and female mice to thapsigargin treatment and monitored protein synthesis, cell death, and ß cell insulin production and secretion. Transcriptomic and proteomic analyses were used to characterize sex differences in islet responses to ER stress. RESULTS: Our single-cell analysis of human ß cells revealed sex-specific changes to gene expression and function in T2D, correlating with more robust insulin secretion in human islets isolated from female donors with T2D compared to male donors with T2D. In mice, RNA sequencing revealed differential enrichment of unfolded protein response pathway-associated genes, where female islets showed higher expression of genes linked with protein synthesis, folding, and processing. This differential expression was physiologically significant, as islets isolated from female mice were more resilient to ER stress induction with thapsigargin. Specifically, female islets showed a greater ability to maintain glucose-stimulated insulin production and secretion during ER stress compared with males. CONCLUSIONS: Our data demonstrate sex differences in ß cell gene expression in both humans and mice, and that female ß cells show a greater ability to maintain glucose-stimulated insulin secretion across multiple physiological and pathological contexts.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Feminino , Masculino , Humanos , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Caracteres Sexuais , Tapsigargina/metabolismo , Proteômica , Insulina/metabolismo , Glucose/metabolismo
6.
Semin Cell Dev Biol ; 138: 81-82, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35970667
7.
Nat Commun ; 13(1): 735, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136059

RESUMO

Insulin receptor (Insr) protein is present at higher levels in pancreatic ß-cells than in most other tissues, but the consequences of ß-cell insulin resistance remain enigmatic. Here, we use an Ins1cre knock-in allele to delete Insr specifically in ß-cells of both female and male mice. We compare experimental mice to Ins1cre-containing littermate controls at multiple ages and on multiple diets. RNA-seq of purified recombined ß-cells reveals transcriptomic consequences of Insr loss, which differ between female and male mice. Action potential and calcium oscillation frequencies are increased in Insr knockout ß-cells from female, but not male mice, whereas only male ßInsrKO islets have reduced ATP-coupled oxygen consumption rate and reduced expression of genes involved in ATP synthesis. Female ßInsrKO and ßInsrHET mice exhibit elevated insulin release in ex vivo perifusion experiments, during hyperglycemic clamps, and following i.p. glucose challenge. Deletion of Insr does not alter ß-cell area up to 9 months of age, nor does it impair hyperglycemia-induced proliferation. Based on our data, we adapt a mathematical model to include ß-cell insulin resistance, which predicts that ß-cell Insr knockout improves glucose tolerance depending on the degree of whole-body insulin resistance. Indeed, glucose tolerance is significantly improved in female ßInsrKO and ßInsrHET mice compared to controls at 9, 21 and 39 weeks, and also in insulin-sensitive 4-week old males. We observe no improved glucose tolerance in older male mice or in high fat diet-fed mice, corroborating the prediction that global insulin resistance obscures the effects of ß-cell specific insulin resistance. The propensity for hyperinsulinemia is associated with mildly reduced fasting glucose and increased body weight. We further validate our main in vivo findings using an Ins1-CreERT transgenic line and find that male mice have improved glucose tolerance 4 weeks after tamoxifen-mediated Insr deletion. Collectively, our data show that ß-cell insulin resistance in the form of reduced ß-cell Insr contributes to hyperinsulinemia in the context of glucose stimulation, thereby improving glucose homeostasis in otherwise insulin sensitive sex, dietary and age contexts.


Assuntos
Diabetes Mellitus Tipo 2/genética , Hiperinsulinismo/genética , Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , Receptor de Insulina/genética , Animais , Conjuntos de Dados como Assunto , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Glucose/metabolismo , Humanos , Hiperinsulinismo/sangue , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Transgênicos , RNA-Seq , Receptor de Insulina/deficiência , Fatores Sexuais
8.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35195254

RESUMO

In Drosophila, changes to dietary protein elicit different body size responses between the sexes. Whether these differential body size effects extend to other macronutrients remains unclear. Here, we show that lowering dietary sugar (0S diet) enhanced body size in male and female larvae. Despite an equivalent phenotypic effect between the sexes, we detected sex-specific changes to signalling pathways, transcription and whole-body glycogen and protein. In males, the low-sugar diet augmented insulin/insulin-like growth factor signalling pathway (IIS) activity by increasing insulin sensitivity, where increased IIS was required for male metabolic and body size responses in 0S. In females reared on low sugar, IIS activity and insulin sensitivity were unaffected, and IIS function did not fully account for metabolic and body size responses. Instead, we identified a female-biased requirement for the Target of rapamycin pathway in regulating metabolic and body size responses. Together, our data suggest the mechanisms underlying the low-sugar-induced increase in body size are not fully shared between the sexes, highlighting the importance of including males and females in larval studies even when similar phenotypic outcomes are observed.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Animais , Tamanho Corporal , Dieta , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Insulina/metabolismo , Larva/metabolismo , Masculino , Açúcares/metabolismo
9.
Cancer Metab ; 10(1): 5, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189981

RESUMO

BACKGROUND: Hyperinsulinemia is independently associated with increased risk and mortality of pancreatic cancer. We recently reported that genetically reduced insulin production resulted in ~ 50% suppression of pancreatic intraepithelial neoplasia (PanIN) precancerous lesions in mice. However, only female mice remained normoglycemic, and only the gene dosage of the rodent-specific Ins1 alleles was tested in our previous model. Moreover, we did not delve into the molecular and cellular mechanisms associated with modulating hyperinsulinemia. METHODS: We studied how reduced Ins2 gene dosage affects PanIN lesion development in both male and female Ptf1aCreER;KrasLSL-G12D mice lacking the rodent-specific Ins1 gene (Ins1-/-). We generated control mice having two alleles of the wild-type Ins2 gene (Ptf1aCreER;KrasLSL-G12D;Ins1-/-;Ins2+/+) and experimental mice having one allele of Ins2 gene (Ptf1aCreER;KrasLSL-G12D;Ins1-/-;Ins2+/-). We then performed thorough histopathological analyses and single-cell transcriptomics for both genotypes and sexes. RESULTS: High-fat diet-induced hyperinsulinemia was transiently or modestly reduced in female and male mice, respectively, with only one allele of Ins2. This occurred without dramatically affecting glucose tolerance. Genetic reduction of insulin production resulted in mice with a tendency for less PanIN and acinar-to-ductal metaplasia (ADM) lesions. Using single-cell transcriptomics, we found hyperinsulinemia affected multiple cell types in the pancreas, with the most statistically significant effects on local immune cell types that were highly represented in our sampled cell population. Specifically, hyperinsulinemia modulated pathways associated with protein translation, MAPK-ERK signaling, and PI3K-AKT signaling, which were changed in epithelial cells and subsets of immune cells. CONCLUSIONS: These data suggest a potential role for the immune microenvironment in hyperinsulinemia-driven PanIN development. Together with our previous work, we propose that mild suppression of insulin levels may be useful in preventing pancreatic cancer by acting on multiple cell types.

10.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647574

RESUMO

Male-female differences in many developmental mechanisms lead to the formation of two morphologically and physiologically distinct sexes. Although this is expected for traits with prominent differences between the sexes, such as the gonads, sex-specific processes also contribute to traits without obvious male-female differences, such as the intestine. Here, we review sex differences in developmental mechanisms that operate at several levels of biological complexity - molecular, cellular, organ and organismal - and discuss how these differences influence organ formation, function and whole-body physiology. Together, the examples we highlight show that one simple way to gain a more accurate and comprehensive understanding of animal development is to include both sexes.


Assuntos
Caracteres Sexuais , Desenvolvimento Sexual/genética , Animais , Diferenciação Celular , Feminino , Humanos , Masculino
11.
Elife ; 102021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34672260

RESUMO

Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.


Assuntos
Proteínas de Drosophila/genética , Gorduras/metabolismo , Hormônios de Inseto/metabolismo , Proteínas Nucleares/genética , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Masculino , Proteínas Nucleares/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Processos de Determinação Sexual , Fatores Sexuais
12.
G3 (Bethesda) ; 11(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33793746

RESUMO

In Drosophila raised in nutrient-rich conditions, female body size is approximately 30% larger than male body size due to an increased rate of growth and differential weight loss during the larval period. While the mechanisms that control this sex difference in body size remain incompletely understood, recent studies suggest that the insulin/insulin-like growth factor signaling pathway (IIS) plays a role in the sex-specific regulation of processes that influence body size during development. In larvae, IIS activity differs between the sexes, and there is evidence of sex-specific regulation of IIS ligands. Yet, we lack knowledge of how changes to IIS activity impact body size in each sex, as the majority of studies on IIS and body size use single- or mixed-sex groups of larvae and/or adult flies. The goal of our current study was to clarify the body size requirement for IIS activity in each sex. To achieve this goal, we used established genetic approaches to enhance, or inhibit, IIS activity, and quantified pupal size in males and females. Overall, genotypes that inhibited IIS activity caused a female-biased decrease in body size, whereas genotypes that augmented IIS activity caused a male-specific increase in body size. These data extend our current understanding of body size regulation by showing that most changes to IIS pathway activity have sex-biased effects, and highlights the importance of analyzing body size data according to sex.


Assuntos
Proteínas de Drosophila , Insulina , Transdução de Sinais , Somatomedinas , Animais , Tamanho Corporal , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Masculino
13.
Elife ; 102021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448263

RESUMO

Nutrient-dependent body size plasticity differs between the sexes in most species, including mammals. Previous work in Drosophila showed that body size plasticity was higher in females, yet the mechanisms underlying increased female body size plasticity remain unclear. Here, we discover that a protein-rich diet augments body size in females and not males because of a female-biased increase in activity of the conserved insulin/insulin-like growth factor signaling pathway (IIS). This sex-biased upregulation of IIS activity was triggered by a diet-induced increase in stunted mRNA in females, and required Drosophila insulin-like peptide 2, illuminating new sex-specific roles for these genes. Importantly, we show that sex determination gene transformer promotes the diet-induced increase in stunted mRNA via transcriptional coactivator Spargel to regulate the male-female difference in body size plasticity. Together, these findings provide vital insight into conserved mechanisms underlying the sex difference in nutrient-dependent body size plasticity.


Assuntos
Tamanho Corporal , Drosophila melanogaster/fisiologia , Insulina/metabolismo , Transdução de Sinais , Animais , Feminino , Masculino , Caracteres Sexuais , Processos de Determinação Sexual , Regulação para Cima
14.
Curr Biol ; 30(21): R1327-R1330, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33142105

RESUMO

Sex differences in the Drosophila gut were discovered only recently. Recent work significantly extends our understanding of how steroid hormones specify these male-female differences by revealing a key role for ecdysone in regulating intestinal stem cell proliferation.


Assuntos
Ecdisona , Microbioma Gastrointestinal , Animais , Drosophila , Feminino , Masculino , Ovário , Caracteres Sexuais , Esteroides
15.
PLoS Biol ; 18(1): e3000595, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961851

RESUMO

Triglycerides are the major form of stored fat in all animals. One important determinant of whole-body fat storage is whether an animal is male or female. Here, we use Drosophila, an established model for studies on triglyceride metabolism, to gain insight into the genes and physiological mechanisms that contribute to sex differences in fat storage. Our analysis of triglyceride storage and breakdown in both sexes identified a role for triglyceride lipase brummer (bmm) in the regulation of sex differences in triglyceride homeostasis. Normally, male flies have higher levels of bmm mRNA both under normal culture conditions and in response to starvation, a lipolytic stimulus. We find that loss of bmm largely eliminates the sex difference in triglyceride storage and abolishes the sex difference in triglyceride breakdown via strongly male-biased effects. Although we show that bmm function in the fat body affects whole-body triglyceride levels in both sexes, in males, we identify an additional role for bmm function in the somatic cells of the gonad and in neurons in the regulation of whole-body triglyceride homeostasis. Furthermore, we demonstrate that lipid droplets are normally present in both the somatic cells of the male gonad and in neurons, revealing a previously unrecognized role for bmm function, and possibly lipid droplets, in these cell types in the regulation of whole-body triglyceride homeostasis. Taken together, our data reveal a role for bmm function in the somatic cells of the gonad and in neurons in the regulation of male-female differences in fat storage and breakdown and identify bmm as a link between the regulation of triglyceride homeostasis and biological sex.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/genética , Drosophila/metabolismo , Lipase/fisiologia , Metabolismo dos Lipídeos/genética , Lipólise/genética , Caracteres Sexuais , Animais , Animais Geneticamente Modificados , Metabolismo Energético/genética , Feminino , Lipase/genética , Lipase/metabolismo , Masculino , Micronutrientes/metabolismo , Triglicerídeos/metabolismo
16.
PLoS Genet ; 11(12): e1005683, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26710087

RESUMO

Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.


Assuntos
Tamanho Corporal/genética , Drosophila/genética , Proteínas Nucleares/genética , Caracteres Sexuais , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Corpo Adiposo/metabolismo , Feminino , Insulina/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/metabolismo , Processos de Determinação Sexual/genética , Fatores de Transcrição/genética
17.
PLoS Genet ; 10(10): e1004750, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25356674

RESUMO

The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.


Assuntos
Proteínas de Drosophila/genética , Insulina/metabolismo , Ribossomos/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Insulina/genética , Larva/genética , Larva/crescimento & desenvolvimento , Músculos/metabolismo , Interferência de RNA , RNA Ribossômico/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Transdução de Sinais , Fatores de Transcrição/biossíntese
18.
EMBO J ; 31(8): 1916-30, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22367393

RESUMO

The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth.


Assuntos
Drosophila/embriologia , Alimentos , Regulação da Expressão Gênica , RNA Polimerase III/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Corpo Adiposo/embriologia , Modelos Biológicos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(4): 1139-44, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22228302

RESUMO

The target-of-rapamycin pathway couples nutrient availability with tissue and organismal growth in metazoans. The key effectors underlying this growth are, however, unclear. Here we show that Maf1, a repressor of RNA polymerase III-dependent tRNA transcription, is an important mediator of nutrient-dependent growth in Drosophila. We find nutrients promote tRNA synthesis during larval development by inhibiting Maf1. Genetic inhibition of Maf1 accelerates development and increases body size. These phenotypes are due to a non-cell-autonomous effect of Maf1 inhibition in the fat body, the main larval endocrine organ. Inhibiting Maf1 in the fat body increases growth by promoting the expression of brain-derived insulin-like peptides and consequently enhanced systemic insulin signaling. Remarkably, the effects of Maf1 inhibition are reproduced in flies carrying one extra copy of the initiator methionine tRNA, tRNA(i)(Met). These findings suggest the stimulation of tRNA(i)(Met) synthesis via inhibition of dMaf1 is limiting for nutrition-dependent growth during development.


Assuntos
Tamanho Corporal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Insulina/metabolismo , RNA Polimerase III/metabolismo , RNA de Transferência de Metionina/biossíntese , Proteínas Repressoras/metabolismo , Animais , Western Blotting , Clonagem Molecular , Primers do DNA/genética , Dimetil Sulfóxido/farmacologia , Proteínas de Drosophila/genética , Citometria de Fluxo , Proteínas de Insetos/metabolismo , Larva/metabolismo , Polirribossomos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia , Sirolimo/farmacologia
20.
Nat Neurosci ; 13(4): 458-66, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20305646

RESUMO

Doublesex proteins, which are part of the structurally and functionally conserved Dmrt gene family, are important for sex determination throughout the animal kingdom. We inserted Gal4 into the doublesex (dsx) locus of Drosophila melanogaster, allowing us to visualize and manipulate cells expressing dsx in various tissues. In the nervous system, we detected differences between the sexes in dsx-positive neuronal numbers, axonal projections and synaptic density. We found that dsx was required for the development of male-specific neurons that coexpressed fruitless (fru), a regulator of male sexual behavior. We propose that dsx and fru act together to form the neuronal framework necessary for male sexual behavior. We found that disrupting dsx neuronal function had profound effects on male sexual behavior. Furthermore, our results suggest that dsx-positive neurons are involved in pre- to post-copulatory female reproductive behaviors.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Diferenciação Sexual/genética , Comportamento Sexual Animal/fisiologia , Animais , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...